The A.T-DNA-binding domain of mammalian high mobility group I chromosomal proteins. A novel peptide motif for recognizing DNA structure.

نویسندگان

  • R Reeves
  • M S Nissen
چکیده

We have determined the domains of the mammalian high mobility group (HMG)I chromosomal proteins necessary and sufficient for binding to the narrow minor groove of stretches of A.T-rich DNA. Three highly conserved regions within each of the known HMG-I proteins is closely related to the consensus sequence T-P-K-R-P-R-G-R-P-K-K. A synthetic oligopeptide corresponding to this consensus "binding domain" (BD) sequence specifically binds to substrate DNA in a manner similar to the intact HMG-I proteins. Molecular Corey-Pauling-Koltun model building and computer simulations employing energy minimization programs to predict structure suggest that the consensus BD peptide has a secondary structure similar to the antitumor and antiviral drugs netropsin and distamycin and to the dye Hoechst 33258. In vitro these ligands, which also preferentially bind to A.T-rich DNA, have been demonstrated to effectively compete with both the BD peptide and the HMG-I proteins for DNA binding. The BD peptide also contains novel structural features such as a predicted Asx bend or "hook" at its amino-terminal end and laterally projecting cationic Arg/Lys side chains or "bristles" which may contribute to the binding properties of the HMG-I proteins. The predicted BD peptide structure, which we refer to as the "A.T-hook," represents a previously undescribed DNA-binding motif capable of binding to the minor groove of stretches of A.T base pairs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The A*T-DNA-binding Domain of Mammalian High Mobility Group I Chromosomal Proteins

We have determined the domains of the mammalian high mobility group (HMG)I chromosomal proteins necessary and sufficient for binding to the narrow minor groove of stretches of A-T-rich DNA. Three highly conserved regions within each of the known HMG-I proteins is closely related to the consensus sequence T-P-K-R-P-R-G-R-P-K-K. A synthetic oligopeptide corresponding to this consensus “binding do...

متن کامل

Phosphorylation of the DNA-binding domain of nonhistone high-mobility group I protein by cdc2 kinase: reduction of binding affinity.

Mammalian high-mobility group I nonhistone protein (HMG-I) is a DNA-binding chromatin protein that has been demonstrated both in vitro and in vivo to be localized to the A + T-rich sequences of DNA. Recently an unusual binding domain peptide, "the A.T-hook" motif, that mediates specific interaction of HMG-I with the minor groove of DNA in vitro has been described. Inspection of the A.T-hook reg...

متن کامل

1H and 13C NMR assignments and molecular modelling of a minor groove DNA-binding peptide from the HMG-I protein.

The HMG-I subfamily of high mobility group (HMG) chromatin proteins consists of DNA-binding proteins that preferentially bind to stretches of A.T-rich sequence both in vitro and in vivo. Recently, members of the HMG-I family have been suggested to bind in vitro to the narrow minor groove of A.T-DNA by means of an 11 amino acid peptide binding domain (BD) which, because of its predicted structur...

متن کامل

In silico investigation of lactoferrin protein characterizations for the prediction of anti-microbial properties

Lactoferrin (Lf) is an iron-binding multi-functional glycoprotein which has numerous physiological functions such as iron transportation, anti-microbial activity and immune response. In this study, different in silico approaches were exploited to investigate Lf protein properties in a number of mammalian species. Results showed that the iron-binding site, DNA and RNA-binding sites, signal pepti...

متن کامل

STU DIES ON THE BINDING OF THE ALKYLATING AGENT SULFUR MUSTARD TO CALF THYMUS CHROMATIN

In this study the effect of the alkylating agent, sulfur mustard, on calf thymus chromatin was investigated using UV/Vis spectroscopy, gel electrophoresis and thermal denaturation techniques. The results show that treatment of isolated chromatin with sulfur mustard releases histones from the core particles but does not affect histone H I and nonhistone chromosomal proteins. The content of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 265 15  شماره 

صفحات  -

تاریخ انتشار 1990